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Abstract 

Amongst the many benefits of remote sensing techniques in disaster- or conflict-related 

applications, timeliness and objectivity may be the most critical assets. Recently, increasing 

sensor quality and data availability have shifted the attention more towards the information 

extraction process itself.  With promising results obtained by deep learning (DL), the notion 

arises that DL is not agnostic to input errors or biases introduced, in particular in sample-

scarce situations. The present work seeks to understand the influence of different sample 

quality aspects propagating through network layers in automated image analysis. In this 

paper, we broadly discuss the conceptualisation of such a sample database in an early 

stage of realisation: (1) inherited properties (quality parameters of the underlying image such 

as cloud cover, seasonality, etc.); (2) individual (i.e., per-sample) properties, including a. 

lineage and provenance, b. geometric properties (size, orientation, shape), c. spectral 

features (standardized colour code); (3) context-related properties (arrangement Several 

hundred samples collected from different camp settings were hand-selected and 

annotated with computed features in an initial stage. The supervised annotation routine is 

automated so that thousands of existing samples can be labelled with this extended feature 

set. This should better condition the subsequent DL tasks in a hybrid AI approach.  

Keywords: humanitarian action, earth observation, deep learning, data assimilation, 

hybrid AI, sample quality, automation 

1 Shifting demands in operational humanitarian EO  

1.1 Time criticality vs reliability 

Remote sensing and Earth observation (EO) derived products play a growing role in providing 
relevant and up-to-date information for humanitarian operations (Lang et al., 2019). Amongst 
the many benefits of remote sensing techniques in disaster- and conflict-related applications, 
timeliness and objectivity may be regarded as the most critical assets (Denis et al., 2016; Voigt 
et al., 2016). This applies, for example, to refugee camp mapping or dwelling extraction 
routines in deprived urban areas for population estimation, where otherwise such figures are 
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missing or largely outdated (Quinn et al., 2018). About a decade ago, when the humanitarian 
community started to adopt EO technologies in operations, both aspects of actuality (i.e., up-
to-date and trustworthy information) were mainly referred to image (source) quality. 
Reluctance with respect to image provision, image manipulation, limited spatial resolution, 
cloud contamination, etc., was the main concern with respect to operational use. Recently, 
increasing sensor quality, data fusion techniques, and data availability have shifted the attention 
more towards the information extraction process itself (Lang, Füreder, et al., 2019).  The 
increasing acceptance has experienced a synchronous shift in attention of the larger EO 
community from data management to data exploitation (Giuliani et al., 2017; Sudmanns et al., 
2019; Voigt et al., 2016).  

In highly demanding operational settings, timeliness and reliability may be considered mutually 
exclusive, if not contradictory, even. In demanding tasks, innovation in the automation process 
is limited, making the information extraction process ‘stagnant’ and dominated by and manual 
delineation. Recently, the community saw many approaches labelled as “semi-automated”, 
attempting to best implement computer vision with (GE-)OBIA techniques (Lang, Hay, 
Baraldi, Tiede, & Blaschke, 2019) and to overcome the tedious delineation process of small 
features which occurs in large frequencies and diversities (Füreder et al., 2015). In particular, 
in well-structured camp arrangements with distinct structures, the performance of region-
based segmentation routines are satisfying and – once the delineation of dwellings has been 
achieved – object features such as size, colour, shape, etc., can be used to categorise them. The 
process is challenging when a clear distinction of individual dwellings is hampered by the 
complexity of the arrangement, and even visual inspection reaches its limits, and inter-subject 
objectivity is no longer guaranteed among experts. 

With promising results obtained by deep learning (DL) in various applications (Ghorbanzadeh, 
Tiede, Wendt, Sudmanns, & Lang, 2020; Quinn, et al., 2018; Tiede, Wendt, Schwendemann, 
Alobaidi, & Lang, 2021) humanitarian community adopts to data science techniques as well.  
This also applies to computer vision, which gradually evolves from static rule-based strategies 
to a more dynamic, self-adaptable machine learning-based approach. The limitation for the 
latter, however, is the existence and quality of samples. Despite the inherent improvement 
capabilities of machine learning, DL is not agnostic to input errors (Ghorbanzadeh, Tiede, 
Dabiri, Sudmanns, & Lang, 2018) or biases introduced, in particular in sample-scarce 
situations. Sample scarcity in humanitarian applications may be attributed to the complexity 
and required level of detail (e.g., complex urban settings or organically grown refugee camps), 
for which samples on a generalised level do not exist in sufficient number or quality. Even 
though tents and other dwelling types can be generalised and described according to standard 
building codes, the confusion with other and similar features, mixed in and intermingled, is 
high and the appearance on EO imagery greatly depends on seasonal conditions (dry vs. humid 
periods, overgrown by vegetation, etc.). The detection and correct interpretation of different 
dwelling types, in a degree relevant to humanitarian organisations, is a dedicated expert task. 
While support is increasingly available through community-mapping approaches such as 
Humanitarian Open Street Map (HOT OSM or Missing Maps), utilising crowd-sourced 
information needs, therefore, to be curated and the existing dwelling delineations need to be 
evaluated and characterised (Albuquerque, Herfort, & Eckle, 2016; Elia, Balbo, & Boccardo, 
2018).  



Lang et al 

211 
 

The challenge remains: compromising reliable results for the sake of increased automation is 
a tricky decision in operational humanitarian settings, where actions and decisions may have 
severe implications for human lives and wellbeing. Taking the ‘best of two worlds’, we try to 
apply hybrid approaches, which are aware of the physical properties of the target dwellings, 
which rests upon the experience of operational mapping task of the last ten years. Based on 
this legacy, an annotated dwelling sample database is foreseen, which documents sample 
provenance and characteristics in a way that observations and dwelling models are well attuned 
in a hybrid AI and data assimilation approach. 

1.2 Hybrid AI and data assimilation 

Artificial intelligence (AI) simulates processes characteristic to human intelligence and thereby 
mimics human actions. Among the cognitive relevant AI tasks includes knowledge 
representation, automated reasoning, machine learning (ML) and teaching. Types of AI are 
distinguished by adaptability, performance, proficiency as compared to the human brain 
ranging from narrow AI and general AI to Super AI. Physics-aware or hybrid AI is a strategy 
to better condition ML/DL tasks by employing physical models, principles, or even laws. 
These principles into consideration using general conditions and constraints utilising machine 
teaching as an enabler (Lang, Hay, et al., 2019). One strategy is data assimilation.  

Data assimilation aims to foster data integration and data harmonisation in a bi-directional way 
between the measured and the modelled reality (Lahoz and Schneider, 2014). In Earth 
observation, data assimilation compensates for the fact that a specific site may be observed in 
a variety of measurements by satellites with different sensor types, at different dates, different 
angular geometries and viewing directions, illumination conditions (solar time), observation 
frequencies, etc. (Verhoef and Bach, 2003). In particular, for monitoring purposes, 
measurements over time need to assure to actually measure the status of the system or object 
and not the divergence in observation. For vegetation and crop type monitoring, radiative 
transfer modelling (RTF) is being used as an example (Graf, Papp, & Lang, 2020; Verhoef and 
Bach, 2003). In general, when interpreting images and overcoming the semantic gap, rigorous 
classifiers based on solid spectral models, acting across sensors, are available. Semantic 
enrichment of satellite data (Augustin, Sudmanns, Tiede, Lang, & Baraldi, 2019). For satellite 
image time-series (SITS), the seasonal dynamics and the variability the appearance of the target 
classes are relevant. Data assimilation can also bridge non-availabilities of EO data and other 
observations to provide estimates or prediction for geographical variables. A related aspect is 
data imputation, i.e. filling gaps in observations, e.g. by other, complementary data sets (e.g. 
Radar imagery in the absence of VHR data under cloudy weather conditions).  

2 Quality-controlled samples  

2.1 Rationale in the context of dwelling extraction 

A better understanding of sample quality is a critical requirement to improve automated DL 
tasks in image analysis. Our aim is to investigate systematically how various imperfections in 
the delineation and provision of samples affect the result of machine learning. We, therefore, 



Lang et al 

212 
 

in a first step, defined and tested a set of quality indicators, computed and recorded in a 
database next to each sample’s label (dwelling category). These indicators comprise: (1) 
inherited properties (quality parameters of the underlying image such as cloud cover, 
seasonality, etc.); (2) individual (i.e., per-sample) properties, including a. lineage and 
provenance, b. geometric properties (size, orientation, shape), c. spectral features (standardized 
colour code); (3) context-related properties (spatial arrangement Currently, the approach is 
‘static’ and does not consider the temporal dynamics of dwelling evolution, meaning we record 
quality indicators per image timeslot (epoch). Several hundred samples collected from different 
camp settings were selected and annotated using the expert-based selection of quality 
indicators in an initial stage. It is foreseen that thousands of existing samples and future 
delineations are labelled automatically with this set of quality-relevant features. 

The following figures illustrate the challenges encountered in documenting the quality 
indicators of the samples using mixed methods for dwelling delineation in an operational 
production environment. We deal with different sensors and image resolutions, limitations due 
to cloud cover and atmospheric conditions, problems of geometric correction (shifts), 
incomplete interpretation or extraction (false positives and negatives), different delineation 
techniques (segmentation-based vs. manual delineation), and inconsistencies in the 
classification and labelling (see figure 1). Some of these aspects influence the quality of the 
samples globally, i.e. per image. Atmospheric conditions and cloud contamination or any other 
aspects of image correction introduce a global bias to the extraction process. While difficult to 
estimate, this bias is an important aspect of data provenance in the process of turning primary 
(continuous image) data into secondary (discrete object) data.  
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Figure 1: Various aspects to consider in estimating quality parameters of extracted dwellings (see text 

for further explanation). 

Global (per-image) quality indicators. We aim to use quality-proven polygon data as input for 
training tasks of ML algorithms rather than labelled imagery. We, therefore, have to ensure 
that the extracted dwelling polygons have a unique image source assigned. What sounds trivial 
is sometimes impaired by the complexity of operational tasks, using multiple input data (e.g. 
VHR satellite images, drones), or observing dwellings over a certain longer time period with 
updated image data (monitoring). Once a unique match of source and dwelling object is 
assured, the produced dwelling data will inherit the global image quality indicators, like cloud 
cover, incidence angle, atmospheric conditions, geometric shift, etc. This is another crucial 
aspect of data provenance and reproducibility because only polygon data with a unique source 
should be considered a matching pair to be used as training samples.  

In the absence of an alternative option, we are currently experimenting with a global quality 
score for judging the data provenance as a combination of image resolution, cloud cover and 
feature delineation (including shifts). Table 1 shows a draft version of such a grading scheme, 
which would attest all samples taken from one input image at a certain epoch a global quality 
score. Those with a quality score 1 could be used as testing samples to start the model training 
without any bias. Further, samples with a lesser quality can be used for training to increase the 
robustness of the model. Samples of quality scores 3 or 4 might suffer inconsistencies in spatial 
registration or delineation type but may still be used for sample augmentation purposes. 
Quality score 6 would indicate a status of non-correspondence between image and extracted 
dwellings. 
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Table 1: Grading scheme for assessing the overall quality of data provenance (draft) 

Delineation 
Image 

resolution 
Cloud cover 

Quality 
score 

Nearly perfect 
delineation, minor 
differences in delineation 

High none 1 

Minor differences in 
delineation 

high-medium none 2 

Larger difference in 
delineation; repairable 
dwelling shift 

High-medium partly  3 

Dwellings partly missing; 
repairable dwelling shift 

High-medium partly 4 

Many dwellings missing; 
shift not repairable 

Medium-Low large 5 

no correspondence in 
delineation 

- - 6 

2.2 Quality features per dwelling 

The present work is a precursor to a larger investigation that aims at documenting 
systematically how different aspects of quality of samples propagate through artificial neural 
network layers, thereby judging how this reflects in the result of the DL task. An extensive 
number of annotated samples, semi-automatically derived and manually revised, are collected, 
representing features suitable for enumerating and estimating the actual local population; they 
are stored and made accessible in a dedicated sample database. The samples consist of vector 
representations (polygons) of dwellings of different types like tents, huts, tukuls, facility 
buildings, etc.; hence have a different characteristic to be taken into account for the structure 
of the database. Next to the labels, the dwelling samples are characterised by a set of quality 
indicators assessing their spectral and spatial properties (table 2).  
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Table 2: Dwelling sample quality indicators 

Spectral features. Spectral characteristics are recorded based on standardised colour categories 
using a knowledge-based feature space partitioning system called SIAM® The idea is to 
generate standardised categories (semi-concepts) fully automated from VHR imagery (figure 
2). This requires calibration (as far as possible), even in operational, demanding application 
contexts. The advantage is to have stable categories rather than subjective colour impressions 
(“light-blue tents”, “brownish tukul”, “bright dwellings”, etc.). This helps enrich the sample database 
because we have a (certain level of) semantic understanding of the global image content (e.g. 
dominance of dwelling type X) and a per-object uniform colour label to support the 
classification. The standardised colour categories are based on a fully automated pre-
classification of the multi-spectral properties from VHR images; this process involves 
radiometric calibration of the images into top-of-atmosphere (TOA) reflectance followed by 
a knowledge-based feature classifier. The image calibration process includes the absolute 
radiometric calibration factors provided by the VHR image vendors; this ensures the baseline 
for multiple sensors data integration and fusion in every operational and demanding 
application contexts. The predefined colour codes consist of a discrete and fixed number of 
cross-sensor spectral categories (e.g. 33 or 61) whose degree of semantic information – while 
lower than common land cover classes – is superior to non-semantic image data. This provides 
a stable and uniform representation of object primitives labelled to support recognition and 
classification by the model. 

Dwelling delineation process 
Dwelling shift Polygons do not match the source image and show offsets 
Inconsistency in 
classification 

Different labels depending on the source of the footprints and 
image 

Incomplete and double 
count of dwellings 

Dwellings double-counted or do not totally cover the apparent 
dwelling on the source image 

Delineation strategy Manual, semi-automated (OBIA), etc. 
 

Image characteristics (inherited by dwellings) 
Cloud cover Not all dwelling in the imaged scene captured  
SITS Evolution of a camp and seasonal effects 
Delineation strategy (see above) 

 
Dwelling individual properties 

Representation As polygon, as point (centroid) 
Spectral properties Colour categories (SIAM-based) 
Neighbourhood, 
context 

Embeddedness in dwellings of the same type 

Geometrical 
attributes 

Size, position (centroid) 

Shape Compactness, regular fit, orientation, etc. 
SITS Dwelling dynamics (emergence, disappearance, etc.)  
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Figure 2: Fully automatic pre-classification of calibrated VHR Pléiades imagery into a fixed set of 61 

spectral categories using SIAM®. Different vegetation, water, built-up, and other low-level semantic 

classes are discerned in a standardised and transferable manner,   

Spatial features. Spatial properties comprise geometric properties and spatial arrangement. The 
azimuth angle is the angle between two points in the Cartesian plane; it is calculated between 
the centroid of the dwelling itself and the neighbouring dwelling. The orientation angle was 
calculated to show the orientation of individual dwellings against geographic North. The shape 
index measures the deviation of a given polygon from the circularity of a perfect circle of the 
same size. For any set of geometric forms of a given area, the circle has the shortest perimeter 
in relation to the area; thus its compactness is highest. Any other form exhibiting the same 
area shows less compactness and a higher shape index. The proximity index is well suited for 
indicating the embeddedness of an extracted dwelling in its surrounding, i.e. to which degree 
a dwelling differentiate from neighbours in terms of size and distance. It was calculated for 
each dwelling by identifying the dwellings that were within the buffer distance of the indexed 
dwelling and then calculating the size to distance ratio for each of the n dwellings identified 
within the buffer. 
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2.3 Annotated sample database – a prototypical implementation 

A spatial database in PostgreSQL stores the quality indicators of the image source and the 
respective dwellings (vector data). This database aims to store spatial and spectral 
characteristics of the dwellings analysed in the area of investigation. The simplified database 
schema (figure 3) consists of two main tables: the Image table and the Dwelling 
table connected via image ID as primary and foreign key. The dwellings delineated from each 
image were originally stored in separate individual tables per country and now collated in one 
single schema. The Image table serves as the main table containing information about 
individual dwellings in all images in one place. The Image table contains information about 
image characteristics of the image (radiometric, etc.) properties. The Dwelling table contains 
information about spatial characteristics of individual dwellings, as described above.  

 

Figure 3: Simplified ER diagram of sample DB 
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3 Outlook 

The described conceptual framework for quality indicators of dwelling extraction is currently 
investigated and expert-evaluated in terms of impact on the performance of various DL tasks. 
Being in an early stage of development, we plan to consider temporal aspects of dwelling 
evolution by deriving quality indicators not from single epochs but from multi-temporal (and 
potentially semantically enriched) data cubes. 

Prospectively, hundreds of thousands of existing samples are going to be labelled automatically 
with this extended set of quality indicators. This should better condition the subsequent 
mapping tasks using a hybrid AI approach and improve existing operational mapping routines. 
It may also serve as a stimulating reference dataset for benchmark contests.   
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